Analytical Methods

A HPLC-UV method for the determination of angiotensin I-converting enzyme (ACE) inhibitory activity

Véronique Lahoguea,b,*, Karine Réhela, Laure Taupina, Dominique Harasa, Patrick Allauмеb

aLaboratoire de Biotechnologie et Chimie Marines, Université Européenne de Bretagne, Université de Bretagne Sud, BP 92116, 56321 Lorient, France
bIDMER, 2 rue Batelière, 56100 Lorient, France

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 8 September 2008
Received in revised form 13 February 2009
Accepted 22 May 2009
Available online xxxx

\textbf{Keywords:}
Angiotensin-converting enzyme (ACE)
Fish by-product
Hydrolysate
FAPGG
Captopril
Hill coefficient

\textbf{A B S T R A C T}

To determine the angiotensin-converting enzyme (ACE) inhibitory activity of a fish hydrolysate, different methods were tested. Finally, a sensitive, extraction-free HPLC method using \textit{N}-(3-[2-furylacryloyl]-Phe-Gly-Gly (FAPGG) as substrate was preferred. This method relies on the UV-titration of the peptide 2-furylacyloyl-L-Phe (FAP) resulting from the hydrolysis of the FAPGG after a chromatographic separation on a reverse phase column. The experimental conditions (enzyme/substrate ratio, incubation time, NaCl concentration) were optimised for linearity, sensitivity and precision. The assay was adequate for the study of ACE inhibition by Captopril, used as reference, and several peptides. Captopril and the fish hydrolysate had IC\textsubscript{50} values, respectively of 0.19 ng and 43 μg with standard deviations of 0.09 ng and 5 μg. Afterwards, the determination of the Hill coefficient sustained the hypothesis that active peptides present in the fish hydrolysate were low-molecular weight molecules. This result was confirmed by the activity measurement of the fish hydrolysate fractions obtained by gel filtration.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The angiotensin I-converting enzyme (ACE, EC 3.4.15.1) plays an important role in regulating blood pressure in the renin–angiotensin system because it catalyses the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, and inactivates bradykinin, important role in regulating blood pressure in the renin–angiotensin system. This enzyme is involved in the control of blood pressure and in the regulation of several factors influencing blood pressure. In particular, ACE inhibitors, such as Captopril and Enalapril, are currently used in the treatment of hypertension. However, synthetic ACE inhibitors can have side effects including cough, taste disturbances and skin rashes. Therefore, interest for natural inhibitor peptides has been mainly focused on the identification of food components, principally peptides, able to inhibit ACE activity with the aim to control hypertension and then to prevent cardiovascular diseases through diet. In fact nutrition has been reported as one of the main factors influencing blood pressure.

Numerous antihypertensive peptides are originating from milk proteins. Consequently, a variety of naturally formed bioactive peptides have been found in fermented milk, and there are already a few commercial dairy products supplemented with milk protein derived bioactive peptides as described recently by Ferreira, Eça et al. (2007) and Ferreira, Pinho et al. (2007). Many other ACE inhibitory peptides isolated from a wide variety of foods such as casein (Maruyama, Nakagomi, Tomizura, & Suzuki, 1985; Otte, Shalaby, Zakora, & Nielsen, 2007; Tauzin, Miclo, & Gaillard, 2002), soy (Wu & Ding, 2002), egg (Miguel, Alvarez, Lopez-Fandino, Alonso, & Salaces, 2007; Yoshii et al., 2001), or fish (Fujita & Yoshikawa, 1999; Jung et al., 2006; Kawasaki et al., 2000; Kohama et al., 1988) have been identified and reported. For example, LKPNM derived from fish protein showed an IC\textsubscript{50} value of 2.4 μM, FFVAP from casein exhibited an IC\textsubscript{50} value of 6.0 μM and DLP from soy protein showed an IC\textsubscript{50} value of 4.8 μM.

In order to facilitate the identification and isolation of ACE inhibitors peptides, establishment of a simple, sensitive and reliable in vitro inhibition assay is desirable. Numerous methods for the measurement of ACE activity have been reported, including spectrophotometric, fluorometric, radiochemical, high-performance liquid chromatography and capillary electrophoresis methods. Different substrates are suitable to measure ACE activity,